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Abstract. Optimization methods for a given class are easily modified to utilize additional 
information and work faster on a more restricted class. In particular algorithms that use only the 
Lipschitz constant (e.g. Mladineo, Piyavskii, Shubert and Wood) can be modified to use second 
derivative bounds or gradient calculations. The algorithm of Breiman & Cutler can be modified 
to use Lipschitz bounds. Test cases illustrating accelerations to various algorithms are pro- 
vided. 
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1. Pre l iminaries  

INTRODUCTION 

As  discussed in [1], algori thms can be customized for  special classes of  

funct ions.  This implies the simple expediency of  raising funct ion values 

approximate ly ,  accelerate many  existing implementa t ions  such as those of  

B re iman  & Cutler ,  Mladineo,  Piyavskii,  Shuber t  and Wood.  These  me thods  

can be easily modif ied to use more  informat ion  and work  faster on  a m o r e  

res t r ic ted class. This section cont inues present ing some basic t e rminology  

and includes as background  a general  descript ion of  the basic algorithms. 

Sect ion 2 gives the details of  the accelerations.  Section 3 looks at some 

compar i son  tests. 

NOTATION AND BASIC PROBLEM 

The  basic p rob lem is to find the global min imum a and its locat ion E = f  l (a )  C) 

K of  a funct ion f :K--~  ~ where  K C Nn. K is usually the closure of  a b o u n d e d  

open  set and of ten  a convex body.  

A n  M-cone is any translate of  {(x, Y)IY <- -MIIx l l }  in Rn+l. A B-paraboloid is 
any translate  of  {(x, Y)IY <~ - �89 �9 A n  MB-parabolically capped cone is any 

t ranslate  of  the union  of  the B-parabolo id  and 

(x, Y)IY ~min{ M2 M2 
2 B '  M[[xl[ + ~ f f } } ,  

the  par t  be low the level of  tangency of  the circumscribed M-cone .  

Journal of Global Optimization 4: 37-45, 1994. 
�9 1994 Kluwer Academic Publishers. Printed in the Netherlands. 
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Let  L(M)  be the class of Lipschitz continuous functions with constant M. Let  
Z G  be the set of all differentiable functions with global minimum having zero 

2 gradient. Let  C,(B)  be the class of all twice differentiable functions such that 

h(x o + ax) =f(Xo) + Vf(x0) ~ + 1BIlaxll 2 is an upper bound at each point of the 
domain x 0. Similarly let C~(B) have h(x o + Ax) =f(x0)  + Vf(x0) zXx -�89 2 as 
a lower bound at each point of the domain. For a given function the best bounds 
of the above, respectively, are the maximum and negative of the minimum of the 
eigenvalues of the Hessian. 

The algorithms of Mladineo, Wood, etc. work on L(M).  Breiman & Cutler 
(used to minimize) deal with C2(B). 

BACKGROUND DESCRIPTION OF ALGORITHMS 

For the reader not familiar with the details of the algorithms of Breiman & 
Cutler, Mladineo, Piyavskii, Shubert and Wood, the following general description 
due to Piyavskii [4] is useful. 

�9 Initialization: 
OL 1 ~ -  00 

i = - 1  
Take a user specified x 0 from the domain K 

�9 Evaluation Step: 
Increment i 

Compute  f(xi) 
gi = Vf(xi) (if required) 

a i = min{ai_l,  f(xi)} 
�9 Update Envelope Function Step: 

F~.(x) = maxk= o . . . . .  i hk(x) where h~(x) depends on (x k, f(xk) ) and perhaps 
the gradient vector gi. 

�9 Get Next Sample Point Step: 
xi+ 1 = arg minx~ K F/(x) 

�9 Termination Test: 
If minx~ K Fi(x ) is close to a i stop, otherwise go back to the evaluation step. 

The functions hk(x ) in the above description determine the specific algorithms: 
Breiman & Cutler use hk(X ) = f(xk) + Vf(xk)r(x -- xk) -- 1B IIx - x~ II 2 Mladineo, 
Piyavskii and Shubert use h k ( x ) = f ( x ~ ) - M I I x - x k l l ;  and Wood uses hk(x)= 
f(xk) + mini= 0 . . . . . .  u~- (x -- xk) where n is the dimension of the domain and the 
vectors u~ are the vertices of the standard n-simplex in Nn. 

All these satisfy the two conditions required by Piyavskii, namely hk(X ) <~f(x) 
for all x in the domain and hg(xk) =f(xk) ,  and thus the functions F/(x) are "lower 
envelopes."  So for these algorithms the global minimum is always between lowest 
value of the envelope, minxe K Fi(x), and the lowest known function evaluation, 

~i" 
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Taking a geometric viewpoint, the set of points above or on the graph of F~(x) 
and below or on the hyperplane at height o~ i form a bracket of the point(s) on the 
graph of f corresponding to the global minimum. These nest down as the 
algorithm proceeds. As pointed out in [1], even if the conditions on hk(x ) are not 
satisfied, the resultant algorithms may still produce brackets of the global 
minimum. 

2. Acceleration of Existing Methods 

The geometric viewpoint developed in [1] is the key behind the acceleration ideas 
presented in this paper. The viewpoint is that the bracket found by the algorithm 
occurs by removal of certain regions at each step. The special cases of removing 
paraboloids and cones are the implementations by Breiman & Cutler, Mladineo, 
Piyavskii, Shubert and Wood as outlined in the previous section. However 
removing complicated geometric shapes from a bracket (i.e. finding the global 
minimum of an complex envelope) is more difficult in practice. 

An algorithm designed to work with certain removal regions can be improved 
to work on a class of functions where "better" uniformly bigger removal regions 
are appropriate. Often the better removal region contains one of the algorithm's 
removal regions at a higher point, so the latter can be removed to achieve an 
acceleration. This idea was first used by Wood ([7] pp. 166-168) for "spherical" 
acceleration of multidimensional bisection. He observed that simplicial cones are 
strictly inside better spherical cones and hence sometimes can be raised. 

PARABOLICALLY CAPPED CONE ACCELERATION 

All the accelerations discussed in this section concern the way the next point is 
used by the algorithm. The notation presented in the background description is 
used. In particular the sample sequence of points where the function has been 
evaluated is denoted (xi) , and the lowest known height is a i = min i f(xi). During 
the Update Envelope Function step, the function hi(x ) depends on the evaluated 
point (xi, f(xi) ) and possibly the gradient gi (i.e. hi(x ) = h(x;xi, f(xi) , gi)). If 
the evaluated point is sufficiently high, the following propositions show an 
even higher replacement point (xT, fa(xi)) can be used. Letting hi(x)= 
h(x; x a, fa(xi) , gi) will produce faster convergence and the extra computation is 
minimal and should not affect the overheads of the algorithm. 

The following propositions consider situations where the MB-parabolically 
capped cone can be cut away. Since M-cones, simplicial M-cones and B- 
paraboloids fit inside, any methods that use these as cutters can be accelerated. 
All proofs refer to the following two elementary lemmas which express basic 
geometric facts relating M-cones and B-paraboloids. It suffices only to examine 
two-dimensional cross-sections to verify them. 
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Fig. 1. M-cone and B-paraboloid (cross-section). 

\ 

L E M M A  1. Given an interesting M-cone and B-paraboloid (with common vertical 
axis). Let r be the radius of their sphere of  intersection, dp and d c be the distance 
from the apex of  the paraboloid and cone to the hyperplane containing the sphere. 
The following holds: 

dc 
r=M-  V-B 

L E M M A  2. Consider the circumscribed M-cone and inscribed B-paraboloid to a 
MB-parabolically capped cone. Using the notation of the previous lemma: 

M M 2 M 2 
r=--if,  d c= B and dp= 2B . 

T h e  nex t  two resul ts  re fer  to ra is ing an M - c o n e  and  refer  to  F igure  2. 

use this M-cone C a _ could remove ths 
MB-parabolically capped cone 

lowest  

Fig. 2. Raising an M-cone (cross-section). 

P R O P O S I T I O N  3. Let f be a function in the class L(M)  n C,(B) N ZG. When 
using the algorithm of  Mladineo or Wood, an acceleration is obtained by using the 
replacement sample point (xT, fa(xi) ) during the Update Envelope Function Step. 
Its coordinates are given by x 7 = x i and 
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I a42 
% + di < 2~ff 

fa(x i )  = | M2 M2 where 

Lf(x i) -I- ~ d i p  2 B  

di = f(xi) - a i . 

Proof. Let  C a be the M-cone intersecting the hyperplane at height a~ in the 
same sphere as the MB-parabolically capped cone with apex at (xz, f(xi)) does. 
The part of Ca below a~ is contained in the parabolically capped cone which can 
be removed [1]. Since C a D C, the M-cone used by the algorithm, C a can be used 
to produce a bigger reduction in the bracket. Now d i = f ( x z ) -  az is the distance 
from the apex of the B-paraboloid to the hyperplane. When d i <MZ/ (2B) ,  
Lemma 1 gives the top of Ca above a i. In the other case, Lemma 2 gives the top 
of C a above the top of the paraboloid. �9 

If the next point produces a " record"  value (i.e. has the lowest value so far), it is 
used in the usual way. If the next point 's value is above the lowest known value, 
the replacement point is higher. The amount the accelerated value exceeds the 
unaccelerated value depends on the drop from the current point to the lowest 
known value. Once the drop exceeds a certain amount,  the accelerated height is a 
fixed distance above the evaluated height. 

P R O P O S I T I O N  4. Given a function f in the class C~(B) 71L(M). When using the 
algorithm of  Mladineo, an acceleration using gradient information is obtained by 
using the replacement sample point (x a, fa(xi) ) during the Update Envelope 
Function Step. Its coordinates are given by x~ = x i + 1/B 7f(xi) and 

M d i <  2B 

fa(x i )  = 1~ . M 2 + IlVf(xi)[[ 2 M 2 
(](xi) + ~ di >I 2B 

IlVf(xi)ll 2 
where d i =f(xi)  - a i + 2B 

Proof. The MB-parabolically capped cone that is tangent to the graph of f at 
(x i, f (xi)  ) can be removed. Its apex is 

( 1 
Xg +-~ Vf(xi), f(xi) + 

Hence  the M-cone C with apex at this point could be used. Raising C to C a as in 
the previous proof  gives fa(xi).  Since C a contains the apex of C', the cone used by 
the algorithm, then C a _D C' and using Ca gives a bigger bracket reduction. �9 
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Here  the accelerated value is always greater than the function evaluation unless it 
is a record with zero gradient. 

Note  the above result holds only for Mladineo's algorithm which uses M-cones. 
With simplicial cones used by Wood's method,  Ca D C' often does not hold. To 
guarantee an acceleration, Wood's algorithm needs to be modified to remove both 
C a and C'. It is worth noting that spherical acceleration discussed by Wood is 
compatible with the above two accelerations for M-cones. It can be implemented 
using the accelerated point as the function evaluation. 

The next two results concern raising paraboloids and refer to Figure 3. As 
mentioned in [1] Breiman & Cutler's method could be used to remove B- 
paraboloids by artificially taking the gradient to be zero. If a Lipschitz bound is 

available an acceleration is possible. 

P R O P O S I T I O N  5. Given a function f in the class L (M)N C , (B )0  ZG. When 
using the method of Breiman & Cutler to remove B-paraboloids, an acceleration is 
obtained by using the replacement sample point (xT, fa(xi) ) during the Update 
Envelope Function Step. Its coordinates are given by x 7 = xi and 

If( B 
f a ( x i )  = x i )  + (d i  - l )  > l w h e r e  d i  = f ( x l )  - a i a n d  l = 2 B  . 

[ . f ( x i )  < l 

Proof. The B-paraboloid P with apex at (xi, f(xi) ) is used by the algorithm. If 
d i = f(xi) - % > M2/(2B), the paraboloid Pa can be used since the part below a i is 
in the M-cone C which can be removed. Its apex is at d~ + M2/(2B) by Lemma 2. 
Lemma 1 provides the height of Pa above C. Since Pa D P, its use provides an 

acceleration. �9 

Breiman & Cutler's method can be modified to use a Lipschitz bound. 

�9 . ~ 

. . . . .  ~ . . . . . . . . . .  

Fig. 3. Raising a B-paraboloid (cross-section). 
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PROPOSITION 6. Given a function f in the class C~(B) A L (M) .  When using the 
algorithm o f  Breiman & Cutler, an acceleration is obtained by using the replace- 
ment sample point  (x~, fa(x~)) during the Update Envelope Function Step. Its 
coordinates are given by x 7 = x i and 

I + - B B  (di- l i )2 d i>l i  
f a ( x i ) =  f (x i )  2M 2 

( f (x i )  di ~ l i 

where d i : f(xi)  - -  OL i and l i = (M 2 -IlVf(xi)ll2)/(2B). 
Proof. The paraboloid used by the algorithm is tangent to the graph of f at 

(x i, f (x i )  ). Its apex is (x i .-b ] /B  Vf(xi), f(x~) + (I lVf%)II2)/(2B)) .  The amount this 
can be raised follows from the previous argument using f ( x i ) +  (llVf(x,)ll2)/(2B) 
in place of f(xi) .  �9 

3. Examples 

T E S T I N G  

A discrete testing program discussed in [1] is used to compare different methods. 
A grid of 101 • 101 points was used. Although machine accuracy is attained when 
evaluating function and envelope values at grid points, the algorithms simulated 
are not exactly deepest point but deepest grid point methods. Similarly the 
difference between lowest known value and envelope minimum is only on the 
grid. For this reason the tests were stopped when the bracket consisted of exactly 
the global minimum or an upper limit on evaluations was reached. The main use 
here is to see the effect of the various accelerations. It is noted however the 
results in column two of Table II are comparable with the results reported in 
Breiman & Cutler [2]. 

Tests on five functions are summarized in the tables below. The domains and 
starting points are as in Breiman & Cutler [2] (except for one test on the 
camelback function). Bounds were taken to be the best seen on grid. Tables I and 
II give the number of iterations until stopping. For those not having stopped by 

Table  I. Algor i thms not  using the gradient (iteration = function evaluation) 

Tes t  Mtadineo Mlad ineo+  Parabolic Parabolic MB-parabotic  
prop 3 cutters cutters cones 

+ prop 5 

EXP2  267 12 10 8 8 
COS2 238 64 57 54 54 
R C O S  > >750 212 193 193 192 
G W  >750 474 701 443 441 
C6 > > > > 7 5 0  > > > 7 5 0  > > 7 5 0  > >750 > > 7 5 0  
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Table II. Algorithms using the gradient (iteration = function and gradient evaluation) 

Test Mladineo Breiman B & C Tangent MB 
+ prop 4 & Cutler + Prop 6 parabolic cones 

EXP2 19 27 25 22 
COS2 61 70 55 56 
RCOS 176 176 174 176 
GW 434 705 458 435 
C6 52 92 92 92 
C6 [start(-5, -5)] 55 58 58 58 

Table III. Bounds used 

Test Domain , Initial Lipshitz B, B~ 
Point constant (B-par) (with 

M V) 

EXP2 (-1, 1) x (-1, 1) (0.2, 0.2) 0.61 1 0.37 
COS2 (-1, 1) x (-1, 1) (0.5, 0.5) 4.8 26.7 22.7 
RCOS (-5, 10) x (0, 15) (0, 5) 113.6 29.2 16.8 
GW (-100, 100) x (-100, 100) (25, 25) 2.15 1.01 0.99 
C6 (-5, 5) x (-5, 5) (0, 0) 5601 5628 8.93 

750 iterations, some indication of the estimated total number (based on ex- 
trapolating the error  curves produced by the program) is given. 

COMMENTS 

All these accelerations rely on the fact that MB-parabolically capped cones could 
have been removed. So the algorithm that removes them should bound the 
possible improvement  these accelerations give. Examining the right-most column 
of the tables shows this is (almost) correct. The main exception is the acceleration 
of Mladineo's algorithm using both second derivative bound and gradient 
calculation on the six-hump camel back function (Table II, fifth row, first 
column). For the same sample sequence of points, removing parabolically capped 
cones will always produce a smaller bracket than using the accelerated cones. 
However  in this case the deepest point sequences are quite different. The 
accelerated M-cone algorithm has points going interior to the domain quite early 
on. When another starting point is used this effect disappears. 

Methods using only the M-cone produce lower bounding functions which are 
very poor  local approximations to the graph (if the minimum is smooth). This is 
quite apparent in column one of Table I .  Of course an algorithm that works on 
the whole class of Lipschitz functions must allow for quite jagged possibilities. 
Utilizing second derivative bounds and gradient information via Propositions 3 
and 4 make up for this deficiency. Note the accelerations work nearly as well as 
the parabolically capped cone removing algorithms shown in the right-most 
columns. Propositions 3 and 4 provide useful improvements even if the drop in 
function value is very small. In fact compared to the magnitude of the drop, the 
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acceleration goes to infinity as the drop gets small, hence in the later stages of 
these algorithms the accelerations are affecting each iteration. 

In contrast, methods using paraboloids have envelopes which are good local 
approximations near evaluated points, but move quickly away from them. The 
accelerations of Propositions 5 and 6 take effect only if there is a large drop in 
value. These help only in the early stages of an algorithm. For RCOS this minimal 
drop is nearly the overall distance from minimum to maximum, so acceleration 
hardly occurred. For C6, the minimal drop is so large it never occurred, in fact 
the paraboloid part of the parabolically capped cone is so big that columns 2 to 4 
produced identical output. For GW the minimal drop is quite small and the 
improvement is quite marked. 

MATLAB 

The discrete test program was written for the matlab package. It is available upon 
request (e-mail wpb@math.canterbury.ac.nz). 
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